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Abstract. On the basis of our mixed-signal simulations we report significant stochastic resonance induced
input-output signal improvement in the double-well system for aperiodic input types. We used a pulse train
with randomised pulse locations and a band-limited noise with low cut-off frequency as input signals, and
applied a cross-spectral measure to quantify their noise content. We also supplemented our examinations
with simulations in the Schmitt trigger to show that the signal improvement we obtained is not a result
of a potential filtering effect due to the limited response time of the double-well dynamics.

PACS. 02.50.Ey Stochastic processes – 05.40.Ca Noise

1 Introduction

Having originated in the context of ice ages [1], stochastic
resonance (SR) is nowadays often given a signal process-
ing interpretation: noise aids a weak signal to surpass some
kind of barrier in a system, which is then reflected in the
noise content of the output of the system. As the most
widely used measure of this noise content is the signal-
to-noise ratio (SNR), one quantitative definition of SR
may be a noise-induced optimisation of the output SNR.
Stochastic resonance in itself means using noise to make
the output less noisy than it would be without noise, yet
the signal processing approach just mentioned impels one
to to raise the question whether, in the framework of SR,
noise can also make the output less noisy as compared to
the input, similarly to the way filters do. This question
has long intrigued researchers working in the field of SR,
and after a few unsuccessful attempts at the beginning,
SR-induced input-output improvement has been demon-
strated in a wide range of systems from a simple level
crossing detector [2,3] and other static non-linearities [4]
to the Schmitt trigger [5] and even dynamical systems
such as neuronal models [6] or the archetypal double-well
potential [7].

To our present knowledge it seems unlikely that
stochastic resonance will ever rival filters in technical ap-
plications designed to improve signal quality. Yet there
may exist processes, like neural signal transfer, where
SR represents the only viable method of amplifying sub-
threshold stimuli, and a number of findings do point in
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this direction [8,9]. Since aperiodic signals are native in
this class of processes, studying their role in SR-induced
signal improvement is not at all without relevance, as
demonstrated by the the extensive array of enquiries in
connexion with aperiodic SR [10–16].

Quantifying the noise content of aperiodic signals
poses a special problem, as the most widely used definition
of the signal-to-noise ratio is valid in the strict sense only
for harmonic signals, and even its wide-band extension de-
pends on the condition of periodicity in the input signal.
Several cross-correlational [11,12], cross-spectral or infor-
mation theoretic [13,15,16] measures have been in use in
the field of aperiodic SR to circumvent this problem; here
we adopt the cross-spectral treatment used by Kish [2].

In our present study, we apply a mixed-signal simu-
lation environment to examine whether aperiodic signals
— a randomised pulse train and a band-limited noise as
signal — can also be subject to input-output SNR gain
induced by SR occurring in the archetypal double-well
system.

2 Modelling and methods

2.1 Measures of noise content

The first to introduce the technical notion of signal-to-
noise ratio into SR research were Fauve and Heslot when
reporting stochastic resonance in a real-world electronic
device, the Schmitt trigger [17]. SNR then became widely
adopted as the quantifier of SR, most often taken in the
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following form to facilitate analytical treatment [18]:

R :=
lim∆f→0

∫ f0+∆f

f0−∆f S(f)df

SN (f0)
, (1)

wherein f0 is the frequency of the signal, S(f) denotes
the power spectral density (PSD) of the signal and SN (f)
stands for the background noise PSD. This definition
solely concerns the immediate neighbourhood of the first
spectral peak, thus, strictly speaking, it yields an appro-
priate description of noise content only in the case of si-
nusoidal signals. In our papers, we have argued for the
adoption of a more practical SNR interpretation favoured
in electronics, which takes into account all spectral peaks
and the whole background noise power:

Rw :=

∑∞
k=1 lim∆f→0

∫ kf0+∆f

kf0−∆f S(f)df
∫ ∞
0

SN (f) df
. (2)

This definition (to which, contrasting it to the narrow-
band scope of the definition in Eq. (1), we refer as the
wide-band SNR) is valid for non-sinusoidal periodic signals
as well, and, as we have demonstrated in [7], it provides
a much more realistic account of signal improvement even
in the case of a sine input.

For all measures of noise content, the chief difficulty
lies in separating signal from noise. Sometimes, especially
in the case of the narrow-band definition in equation (1),
this was carried out by recording the PSD of the out-
put when noise was fed into the input without any signal.
This method doubled the simulation workload, as each
simulation step was to be repeated without input signal,
while its validity was also questionable from a theoretical
point of view, since it failed to take into account the cross-
modulation between signal and noise which occurs due to
the non-linearity inherent in systems showing SR. In most
cases, when the background noise PSD is smooth, signal-
noise separation may be simplified by taking the noisy
spectra as a whole and calculating the PSD of the noise
at the signal frequency (or the integer multiples of the
signal frequency in the case of the wide-band definition)
as the average of PSD values in the neighbourhood of the
spectral peak (excluding the peak itself, of course); the
signal PSD is then the PSD at the spectral peak minus
this averaged noise background.

When the input signal is aperiodic, neither of the
above-mentioned methods works, because signal power is
not concentrated at particular frequencies. This case calls
for a more elaborate technique of signal-noise separation,
which can be based on the cross-correlation (as, for exam-
ple, in [11,12]) or the cross-spectrum between the noiseless
input and the noisy signal. Apart from these, information-
theoretic measures such as mutual information [13,16] or
information capacity [15] are also widely used. Here we
reach back to the treatment used in [2], and take the
signal PSD at the output as the part of the total PSD
which shows correlation with the noiseless input, reflected
in their cross-spectrum:

Ssig
out (f) =

|Sin, out (f)|2
Ssig

in (f)
, (3)

where Sin, out (f) denotes the cross power spectral density
of the input signal and the total output, while Ssig

in (f) is
the PSD of the input signal. As the input signal and the
noise are uncorrelated, the noise component of the output
can be obtained simply as

Snoi
out (f) = Stot

out (f) − Ssig
out (f) , (4)

where Stot
out (f) is the PSD of the total output. The cross-

spectral SNR at the output is then defined as

Rcs, out :=

∫ ∞
0

Ssig
out (f)df

∫ ∞
0 Snoi

out (f) df
. (5)

As we are interested in input-output signal improvement,
we also need a cross-spectral SNR at the input:

Rcs, in :=

∫ ∞
0 Ssig

in (f) df
∫ ∞
0 Snoi

in (f) df
, (6)

wherein
Snoi

in (f) = Stot
in (f) − Ssig

in (f) , (7)

and Stot
in (f) denotes the PSD of the total input.

The measures we have chosen to reflect signal improve-
ment are the signal-to noise ratio gains, defined simply as
the ratios of the output and input values of the two kinds
of SNR we consider:

Gw :=
Rw, out

Rw, in
, (8)

and
Gcs :=

Rcs, out

Rcs, in
. (9)

2.2 The mixed-signal simulation environment

We modelled the archetypal dynamical SR system in
which the overdamped motion of a particle in a double-
well potential is given by the following Langevin equation:

dx

dt
= x (t) − x3 (t) + p (t) + w (t) , (10)

wherein p (t) denotes the input signal and w (t) stands
for the noise (a physical white noise — that is, having a
limited bandwidth — in our case). Comparing the noise
content of the input and output signals, we looked for a
signal improvement induced by stochastic resonance.

We applied a mixed-signal (i.e., having both digital
and analogue components) simulation system to realise
the double-well potential and solve equation (10). To ob-
tain the solution of the latter, we first transformed it into
an integral form:

x (t) =
∫ t

0

{
x (τ) − x3 (τ) + p (τ) + w (τ)

}
dτ. (11)

We generated the input signal and the noise digitally, then
converted them into analogue signals. All mathematical



R. Mingesz et al.: Marked signal improvement by stochastic resonance for aperiodic signals in the double-well system 341

Table 1. The parameters of the simulations. The frequency values marked with * are measurable on two different frequency
scale (as discussed above): the first value is the analogue frequency and the second is the corresponding theoretical value. AT

denotes the threshold amplitude.

Parameter Periodic pulses Aperiodic pulses Noise as signal

Amplitude 0.9AT N/A

Pulse width 1.3 ms (13 data point) N/A

Duty cycle 10% N/A

Standard deviation N/A 0.31AT

Frequency* 39 Hz / 4.68 × 10−3 Hz N/A

Bandwidth* N/A 39 Hz / 4.68 × 10−3 Hz

Bandwidth of the additive noise* 5 kHz / 0.6 Hz variable (see graphs)

Sampling frequency 10 kHz

Length of samples 8192

Cycles per sample 32 N/A

Averages per data sequence between 10 and 50

Fig. 1. Our mixed-signal system realising the double-well
model.

operations in equation (11), such as addition, multiplica-
tion and integration, were performed by analogue devices.
The output of our analogue circuitry was the solution of
equation (11), which we then transmitted through an anti-
aliasing filter and converted back to the digital domain
using high-resolution A/D converters. In order to avoid
artefacts that might stem from different treatment, we
used the very same filtering and sampling unit to digi-
tise both the input and the output. The simulation sys-
tem was driven by a high-performance digital signal pro-
cessor (DSP), under the control of a computer running
LabVIEW, which also performed all evaluation tasks. Our
mixed-signal simulation system is summed up in Figure 1.

It is worth noting that the analogue integrator in-
troduces a 1/(RC) factor into equation (11), wherein R
and C are the resistance and the capacitance in the in-
tegrator circuit. The output of the integrator is therefore
not exactly the solution x(t) but

y(t) =
1
b

∫ t

0

[
y(τ) − y3(τ) + p(τ) + w(τ)

]
dτ, (12)

wherein b := RC/(1 s). Substituting s := τ · 1/b, we see
that the integrator transforms the time scale by a b factor:

y(t) =
∫ t/b

0

[
y(bs) − y3(bs) + p(bs) + w(bs)

]
ds. (13)

This means that the actual frequency scale in the analogue
circuitry is 1/b times the theoretical frequency scale cor-
responding to equations (10) and (11). In our simulations,
the value of b was 1.2 × 10−4.

We used three types of input signals in our simula-
tions: the periodic pulse train for which we have already
obtained high SNR gains in the double-well system [7],
included here for the purposes of comparison between
the wide-band and the cross-spectral gain, and two aperi-
odic signals, a pulse train with randomised pulse locations
and a band-limited noise whose upper cut-off frequency is
much smaller than the bandwidth of the noise as stochas-
tic excitation (see Fig. 2). The randomised pulse train
resembles the aperiodic ‘telegraph’ signal in [15], which
yielded input-output information capacity gain in the dou-
ble well, except that our signal has a fixed pulse width and
a fixed average duty cycle, while our choice of using noise
as input signal is akin to [10], only we are interested in an
input-output gain and not the output SNR itself. In the
case of pulse trains, we defined the duty cycle of the signal
as 2τ/T , where τ is the pulse width and T is the period
of the periodic pulse train.

The parameters of our mixed-signal simulations are
summarised in Table 1. In the case of the randomised pulse
train, we determined the peak locations randomly before
starting the simulations and then used exactly the same
waveform in each realisation during averaging, while the
band-limited noise as signal was generated anew in each
averaging step. We also determined the threshold ampli-
tude AT experimentally as the minimum signal amplitude
at which switching between wells can occur without noise,
and expressed the signal amplitude and the standard de-
viation of the noise as normalised by this threshold.

3 Results

First, for the purposes of validation we compared the two
kinds of gains (Gw and Gcs) for a periodic pulse train,
in which case both are valid measures and they should
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Fig. 2. The input signals we used: periodic pulse train, aperiodic pulse train and a band-limited noise.

Fig. 3. The wide-band gain Gw and the cross-spectral gain Gcs

compared in the double-well system for a periodic pulse train
as input. The standard deviation of the additive input noise is
denoted by σ.

theoretically yield the same results. Indeed, Figure 3 shows
that the difference between them is negligible.

The results for the aperiodic signals we were mainly
interested in are depicted in Figure 4. In the left panel,
we can see that a pulse train made aperiodic by hav-
ing its peaks at randomised locations can be improved
by stochastic resonance almost to the same extent as its
periodic counterpart. Encouraged by this finding, we went
even further an applied a band-limited noise with low cut-
off frequency as input signal (to avoid confusion, we use
the terms noise as signal and additive noise to differenti-
ate between the random process acting as input signal and
the one acting as the stochastic excitation which defines
stochastic resonance). From the right panel of Figure 4,
we can deduce that input-output improvement is possible
even for completely random input signals.

One may argue that the input-output improvement of
a noise acting as input signal stems simply from a filtering
effect caused by the fact that the response time of the dou-
ble well is limited, preventing high-frequency oscillations
from appearing at the output. If this is the case, the major
part of the additive noise gets filtered out while the noise
as signal, having a much lower cut-off frequency, remains
largely intact, which then leads to an input-output gain.
We followed two different paths to examine this possibil-
ity: first, we compared the results obtained in the double
well to those obtained in a non-dynamical stochastic res-
onator, the Schmitt trigger, wherein no such filtering can
take place; second, we reduced the bandwidth of the addi-
tive noise to get it closer to the bandwidth of the noise as
signal. The data pertaining to the Schmitt trigger come
from numerical simulations carried out with the same pa-
rameters as the mixed-signal measurements.

In Figure 5 we can observe the similarity between the
results in the double well and those in the Schmitt trigger,
which suggests that the limited response time due to the
dynamics of the double-well system may not play a signif-
icant role in producing an input-output gain. Indeed, at
low frequencies such as those we have chosen the output
of the double well is very similar to that of the Schmitt
trigger.

From the right panel of Figure 4 we can infer that re-
ducing the bandwidth of the additive noise, while degrad-
ing the value of the gain, does not prevent input-output
amplification itself. Comparing the right panel of Figure 4
with the left panel of Figure 6, we may also see that the
reduction in the bandwith of the additive noise affects the
two systems, the dynamical and the non-dynamical, in a
very similar way, showing that the decrease in the value
of the gain is not a result of a filtering effect. We also
examined how the maximum of the gain depends on the
bandwidth of the additive noise: the right panel of Fig-
ure 6 shows that input-output improvement occurs in a
very wide additive noise bandwidth range and the value
of a gain only sinks below one for bandwidths that are
less than ten times the signal bandwidth (it is important
to note here that a noise bandwidth much greater than
the frequency of the signal is a requirement for stochastic
resonance itself to take place).

4 Conclusions

Utilising a mixed-signal simulation system, we have stud-
ied the input-output signal-to-noise ratio gain induced by
the stochastic resonance occurring in the double-well sys-
tem for aperiodic input signals. We applied two kinds of
aperiodic signals, a randomised pulse train and a band-
limited noise as input signal, and using a cross-spectral
measure to reflect their noise content both at the input
and at the output, we have found input-output gains well
above unity for both types of signals.

From a comparison between the dynamical double-well
and the non-dynamical Schmitt trigger, and from study-
ing the dependence of the gain on the bandwidth of the
additive noise, we can conclude that the significant signal
improvement we have found is not a result of a filtering
effect due to the limited response time inherent in the
dynamics of the double well.

Our results give further proof that the range of signal
types which can be improved by stochastic resonance is
not as limited as once thought. Now it is clear that —
although the value of the gain may depend on the type of
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Fig. 4. The cross-spectral gain Gcs in the double-well system for an aperiodic pulse train (left panel) and a band-limited noise
(right panel) as input signal. The three curves on the right panel correspond to three different bandwidths of the additive noise.
The standard deviation σ of the additive input noise is normalised by the value of the threshold amplitude AT .
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Fig. 5. The cross-spectral gain Gcs in the double-well system and in the Schmitt trigger compared for an aperiodic pulse train
(left panel) and a band-limited noise (right panel) as input signal. The standard deviation σ of the additive input noise is
normalised by the value of the threshold amplitude AT .
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the input signal — there are no strict requirements for the
input signal to be amplified by SR: it need not be pulse-
like or periodic at all; in fact, even completely random
signals may be improved.
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